Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Naokazu Yoshikawa, ${ }^{\text {a }}$ * Nobuko Kanehisa, ${ }^{\text {b }}$ Yasushi Kai, ${ }^{\text {b }}$ Hiroshi Takashima ${ }^{\mathrm{a}}$ and Keiichi
Tsukahara ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan, and ${ }^{\mathbf{b}}$ Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-Oka 2-1, Suita, Osaka 565-0871, Japan

Correspondence e-mail:
naokazuu@dg.mbn.or.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.083$
$w R$ factor $=0.201$
Data-to-parameter ratio $=12.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Chloro(4,7-diphenyl-1,10-phenanthroline)(2,2':6', $2^{\prime \prime}$-terpyridine)ruthenium(II) hexafluorophosphate

The title compound, $\left[\mathrm{RuCl}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\right] \mathrm{PF}_{6}$, consists of a monomeric $\mathrm{Ru}^{\text {II }}$ complex cation and a hexafluorophosphate anion. The coordination environment about the $\mathrm{Ru}^{\text {II }}$ atom is distorted octahedral, where the $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$ terpyridine (terpy) ligand is coordinated in a meridional fashion, the 4,7-diphenyl-1,10-phenanthroline (dpphen) ligand is coordinated in a cis fashion and the Cl atom is trans to one of the dpphen N atoms. The $\mathrm{Ru}-\mathrm{N}$ bond distances are in the range $1.956(5)-2.096(5) \AA$ and the $\mathrm{Ru}-\mathrm{Cl}$ distance is 2.403 (2) A.

Comment

Ruthenium(II) complexes have been widely studied within the field of inorganic chemistry. $\mathrm{Ru}^{\text {II }}$ polypyridine complexes play outstanding roles in the fields of solar energy conversion and the storage of light. The chemistry of $\mathrm{Ru}(\mathrm{bpy})_{3}^{2+}$ and its derivatives has been most studied. Metal polypyridine complexes are widely used as building blocks. However, the occurrence of isomers is a major problem in the design of supramolecular systems by synthetic assembly of mononuclear building blocks. The terpyridine ligand is superior to bipyridine from a structural point of view. We tried to synthesize several $\mathrm{Ru}^{\mathrm{II}}$ complexes with mixtures of a terpyridine ligand and 4,7-diphenyl-1,10-phenanthroline (dpphen) for the design of $\mathrm{Ru}^{\mathrm{II}}$ terpyridine complexes (Yoshikawa et al., 2004). In the present study, the title compound, (I), $[\mathrm{RuCl}($ dpphen $)($ terpy $)] \mathrm{PF}_{6}$, was synthesized and isolated.

In (I), the environment about the Ru atom is distorted octahedral; the terpy ligand is coordinated in a meridional

Received 11 January 2005 Accepted 10 February 2005 Online 19 February 2005

Figure 1
Molecular structure of (I), showing 50% probability displacement ellipsoids.
fashion, and the dpphen ligand is coordinated in a cis fashion with the Cl atom trans to one of the dpphen N atoms. The largest distortion of the octahedral geometry is due to the geometric constraints of the terpy ligand, which exhibits small $\mathrm{N}-\mathrm{Ru}-\mathrm{N}$ angles $\left[\mathrm{N} 3-\mathrm{Ru} 1-\mathrm{N} 4=80.5\right.$ (2) ${ }^{\circ}$ and $\mathrm{N} 4-\mathrm{Ru} 1-$ $\mathrm{N} 5=79.4(2)^{\circ}$] and an $\mathrm{Ru}-\mathrm{N}$ distance for the central pyridyl ring fragment [1.956 (5) Å] shorter than those for the outer two. These values are in good agreement with those of other $\mathrm{Ir}^{\mathrm{II}}$ and $\mathrm{Ru}^{\mathrm{II}}$ complexes with the terpy ligand (Yoshikawa et al., 2003; Spek et al., 1994). The Ru-N bond distances of 2.028 (4) -2.096 (5) \AA for the dpphen ligand and 2.042 (5)2.057 (5) \AA for the two terminal terpy ring fragments are in the range found for the other $\mathrm{Ru}^{\mathrm{II}}$ complexes with polypyridyl ligands. The two $\mathrm{Ru}-\mathrm{N}_{\text {dpphen }}$ bond lengths are significantly different, since N 1 is trans to the sterically contracted atom N 4 , and N 2 is trans to the chloride ion. The tendency for the bond length between the $\mathrm{Ru}^{\mathrm{II}}$ and N atom trans to the central terpy ring to become longer is also observed in $\left[\mathrm{RuCl}(\right.$ terpy $)\left(2,2^{\prime}\right.$-biquinoline) $] \mathrm{PF}_{6}$ (Spek et al., 1994).

Experimental

The desired complex was prepared by a sequential procedure with ligand replacement. $\left[\mathrm{RuCl}_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ and $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (0.5 mmol) were mixed in ethylene glycol (15 ml). The suspended mixture was refluxed for 5 min in a microwave oven under a purging nitrogen atmosphere. 4,7-Diphenyl-1,10-phenanthroline $(0.5 \mathrm{mmol})$ was added to the refluxing red solution for 10 min . The mixture was then cooled to room temperature. A saturated aqueous solution of $\mathrm{KPF}_{6}(20 \mathrm{ml})$ was added, and a black-red product began to precipitate and was collected by vacuum filtration (yield 75%).

Dark-red crystals of (I) were obtained by recrystallization from acetonitrile.

Crystal data

$\left[\mathrm{RuCl}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\right] \mathrm{PF}_{6}$
$M_{r}=847.16$
Monoclinic, $C 2 / c$
$a=42.071$ (1) A
$b=8.6042$ (1) \AA
$c=19.9088$ (1) \AA
$\beta=96.096(2)^{\circ}$
$V=7165.9$ (2) \AA^{3}
$Z=8$
$D_{x}=1.570 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 38559 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.63 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Needle, red-black
$0.3 \times 0.1 \times 0.1 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID imagingplate diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.590, T_{\max }=0.939$
28548 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.083$
$w R\left(F^{2}\right)=0.201$
$S=1.74$
5940 reflections
478 parameters

H -atom parameters not refined
8145 independent reflections
5940 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.105$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-54 \rightarrow 54$
$k=-11 \rightarrow 10$
$l=-25 \rightarrow 25$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.045$
$\Delta \rho_{\max }=2.61 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.85 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Ru} 1-\mathrm{Cl} 1$	$2.403(2)$	$\mathrm{Ru} 1-\mathrm{N} 3$	$2.042(5)$
$\mathrm{Ru} 1-\mathrm{N} 1$	$2.096(5)$	$\mathrm{Ru} 1-\mathrm{N} 4$	$1.956(5)$
$\mathrm{Ru} 1-\mathrm{N} 2$	$2.028(4)$	$\mathrm{Ru} 1-\mathrm{N} 5$	$2.057(5)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{N} 1$	$93.7(1)$	$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 5$	$100.2(2)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{N} 2$	$172.6(1)$	$\mathrm{N} 2-\mathrm{Ru} 1-\mathrm{N} 3$	$89.1(2)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{N} 3$	$90.5(1)$	$\mathrm{N} 2-\mathrm{Ru} 1-\mathrm{N} 4$	$96.2(2)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{N} 4$	$91.0(1)$	$\mathrm{N} 2-\mathrm{Ru} 1-\mathrm{N} 5$	$93.7(2)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{N} 5$	$89.2(1)$	$\mathrm{N} 3-\mathrm{Ru} 1-\mathrm{N} 4$	$80.5(2)$
$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 2$	$79.1(2)$	$\mathrm{N} 3-\mathrm{Ru} 1-\mathrm{N} 5$	$159.9(2)$
$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 3$	$99.8(2)$	$\mathrm{N} 4-\mathrm{Ru} 1-\mathrm{N} 5$	$79.4(2)$
$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 4$	$175.3(2)$		

All H atoms were placed at calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.95-0.99 \AA$, and with $U_{\text {iso }}(\mathrm{H})=U_{\text {eq }}(\mathrm{C})$. The maximum difference-density peak is $2.61 \AA$ from H21. In the crystal structure there are voids of $103 \AA^{3}$, which may accommodate water or acetonitrile solvent molecules. However, significant residual densities in the void could not be observed in the difference Fourier map.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick,1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976) ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

metal-organic papers

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L., Gerli, A. \& Reedijk, J. (1994). Acta Cryst. C50, 394397.

Yoshikawa, N., Matsumura-Inoue, T., Kanehisa, N., Kai, Y., Takashima, H. \& Tsukahara, K. (2004). Anal. Sci. 20, 1639-1644.
Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y., Matsumura-Inoue, T., Takashima, H. \& Tsukahara, K. (2003). Acta Cryst. E59, m830-m832.

