metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Naokazu Yoshikawa,^a* Nobuko Kanehisa,^b Yasushi Kai,^b Hiroshi Takashima^a and Keiichi Tsukahara^a

^aDepartment of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan, and ^bDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-Oka 2-1, Suita, Osaka 565-0871, Japan

Correspondence e-mail: naokazuu@dg.mbn.or.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.010 \text{ Å}$ R factor = 0.083 wR factor = 0.201 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Chloro(4,7-diphenyl-1,10-phenanthroline)-(2,2':6',2"-terpyridine)ruthenium(II) hexafluorophosphate

The title compound, $[RuCl(C_{24}H_{16}N_2)(C_{15}H_{11}N_3)]PF_6$, consists of a monomeric Ru^{II} complex cation and a hexafluorophosphate anion. The coordination environment about the Ru^{II} atom is distorted octahedral, where the 2,2':6',2''terpyridine (terpy) ligand is coordinated in a meridional fashion, the 4,7-diphenyl-1,10-phenanthroline (dpphen) ligand is coordinated in a *cis* fashion and the Cl atom is *trans* to one of the dpphen N atoms. The Ru–N bond distances are in the range 1.956 (5)–2.096 (5) Å and the Ru–Cl distance is 2,403 (2) Å. Received 11 January 2005 Accepted 10 February 2005 Online 19 February 2005

Comment

Ruthenium(II) complexes have been widely studied within the field of inorganic chemistry. Ru^{II} polypyridine complexes play outstanding roles in the fields of solar energy conversion and the storage of light. The chemistry of $Ru(bpy)_3^{2+}$ and its derivatives has been most studied. Metal polypyridine complexes are widely used as building blocks. However, the occurrence of isomers is a major problem in the design of supramolecular systems by synthetic assembly of mononuclear building blocks. The terpyridine ligand is superior to bipyridine from a structural point of view. We tried to synthesize several Ru^{II} complexes with mixtures of a ter-4,7-diphenyl-1,10-phenanthroline ligand and pyridine (dpphen) for the design of Ru^{II} terpyridine complexes (Yoshikawa et al., 2004). In the present study, the title compound, (I), [RuCl(dpphen)(terpy)]PF₆, was synthesized and isolated.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved In (I), the environment about the Ru atom is distorted octahedral; the terpy ligand is coordinated in a meridional

fashion, and the dpphen ligand is coordinated in a cis fashion with the Cl atom trans to one of the dpphen N atoms. The largest distortion of the octahedral geometry is due to the geometric constraints of the terpy ligand, which exhibits small N-Ru-N angles $[N3-Ru1-N4 = 80.5 (2)^{\circ}$ and N4-Ru1- $N5 = 79.4 (2)^{\circ}$ and an Ru–N distance for the central pyridyl ring fragment [1.956(5) Å] shorter than those for the outer two. These values are in good agreement with those of other Ir^{III} and Ru^{II} complexes with the terpy ligand (Yoshikawa et al., 2003; Spek et al., 1994). The Ru-N bond distances of 2.028 (4)-2.096 (5) Å for the dpphen ligand and 2.042 (5)-2.057 (5) Å for the two terminal terpy ring fragments are in the range found for the other Ru^{II} complexes with polypyridyl ligands. The two Ru-N_{dpphen} bond lengths are significantly different, since N1 is trans to the sterically contracted atom N4, and N2 is *trans* to the chloride ion. The tendency for the bond length between the Ru^{II} and N atom *trans* to the central terpy ring to become longer is also observed in [RuCl(terpy)(2,2'-biquinoline)]PF₆ (Spek et al., 1994).

Experimental

The desired complex was prepared by a sequential procedure with ligand replacement. [RuCl₃]·H₂O (0.5 mmol) and 2,2':6',2''-terpyridine (0.5 mmol) were mixed in ethylene glycol (15 ml). The suspended mixture was refluxed for 5 min in a microwave oven under a purging nitrogen atmosphere. 4,7-Diphenyl-1,10-phenanthroline (0.5 mmol) was added to the refluxing red solution for 10 min. The mixture was then cooled to room temperature. A saturated aqueous solution of KPF₆ (20 ml) was added, and a black–red product began to precipitate and was collected by vacuum filtration (yield 75%). Dark-red crystals of (I) were obtained by recrystallization from acetonitrile.

 $D_r = 1.570 \text{ Mg m}^{-3}$

Cell parameters from 38 559

8145 independent reflections

5940 reflections with $I > 2\sigma(I)$

H-atom parameters not refined $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Mo $K\alpha$ radiation

reflections

Needle, red-black

 $0.3 \times 0.1 \times 0.1 \ \text{mm}$

 $\theta = 1.0-27.5^{\circ}$ $\mu = 0.63 \text{ mm}^{-1}$

T = 296.2 K

 $R_{\rm int} = 0.105$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -54 \rightarrow 54$

 $k = -11 \rightarrow 10$

 $l = -25 \rightarrow 25$

 $(\Delta/\sigma)_{\text{max}} = 0.045$ $\Delta\rho_{\text{max}} = 2.61 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$

Crystal data

 $[\operatorname{RuCl}(C_{24}H_{16}N_2)(C_{15}H_{11}N_3)]\operatorname{PF}_6$ $M_r = 847.16$ Monoclinic, C2/c a = 42.071 (1) Å b = 8.6042 (1) Å c = 19.9088 (1) Å $\beta = 96.096$ (2)° V = 7165.9 (2) Å³ Z = 8

Data collection

Rigaku R-AXIS RAPID imagingplate diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) *T*_{min} = 0.590, *T*_{max} = 0.939 28 548 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.083$ $wR(F^2) = 0.201$ S = 1.745940 reflections 478 parameters

Table 1

Selected geometric parameters (Å, °).

Ru1-Cl1	2.403 (2)	Ru1-N3	2.042 (5)
Ru1-N1	2.096 (5)	Ru1-N4	1.956 (5)
Ru1–N2	2.028 (4)	Ru1-N5	2.057 (5)
	02.7 (1)	N1 D 1 N5	100.2 (2)
CII-RUI-NI	93.7 (1)	NI-KUI-N5	100.2 (2)
Cl1-Ru1-N2	172.6 (1)	N2-Ru1-N3	89.1 (2)
Cl1-Ru1-N3	90.5 (1)	N2-Ru1-N4	96.2 (2)
Cl1-Ru1-N4	91.0 (1)	N2-Ru1-N5	93.7 (2)
Cl1-Ru1-N5	89.2 (1)	N3-Ru1-N4	80.5 (2)
N1-Ru1-N2	79.1 (2)	N3-Ru1-N5	159.9 (2)
N1-Ru1-N3	99.8 (2)	N4-Ru1-N5	79.4 (2)
N1-Ru1-N4	175.3 (2)		

All H atoms were placed at calculated positions, with C–H distances of 0.95–0.99 Å, and with $U_{\rm iso}({\rm H}) = U_{\rm eq}({\rm C})$. The maximum difference-density peak is 2.61 Å from H21. In the crystal structure there are voids of 103 Å³, which may accommodate water or aceto-nitrile solvent molecules. However, significant residual densities in the void could not be observed in the difference Fourier map.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *TEXSAN* (Molecular Structure Corporation, 2000); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick,1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976) *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (2000). *TEXSAN*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

- Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan.
 Sheldrick, G. M. (1997). *SHELXL97*. University of Göttingen, Germany.
 Spek, A. L., Gerli, A. & Reedijk, J. (1994). *Acta Cryst.* C50, 394–397.
- Yoshikawa, N., Matsumura-Inoue, T., Kanehisa, N., Kai, Y., Takashima, H. & Tsukahara, K. (2004). Anal. Sci. 20, 1639-1644.
- Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y., Matsumura-Inoue, T., Takashima, H. & Tsukahara, K. (2003). Acta Cryst. E59, m830-m832.